z-logo
open-access-imgOpen Access
Поиск многомерной связи категориальных признаков: сравнение CHAID, логлинейного анализа и множественного анализа соответствий
Author(s) -
Svetlana Zhuchkova,
Алексей Николаевич Ротмистров
Publication year - 2018
Publication title -
monitoring obŝestvennogo mneniâ: èkonomičeskie i socialʹnye peremeny
Language(s) - Russian
Resource type - Journals
eISSN - 2219-5467
pISSN - 1815-8617
DOI - 10.14515/monitoring.2019.2.02
Subject(s) - chaid , computer science , artificial intelligence , decision tree
В работе затрагивается проблема отсутствия разработанных концепций анализа многомерных связей между категориальными признаками при том, что такие признаки и многомерные связи между ними довольно распространены в социологических исследованиях. Об этом свидетельствует ряд методологических работ, в которых делается вывод о необходимости анализа многомерных связей, а не только парных, поскольку многомерные связи не сводятся к набору парных связей. Тем не менее опыт изучения многомерных связей между категориальными признаками в социологии остается довольно ограничен и практически отсутствует его теоретическое обобщение. Настоящим исследованием авторы попытались восполнить этот пробел через сравнение трех методов, подходящих для поиска многомерной связи между категориальными признаками: дерева решений CHAID, логлинейного анализа и множественного анализа соответствий. Сравнение методов происходило на теоретическом и эмпирическом уровнях. Содержательной задачей эмпирического этапа выступило составление портрета типичного представителя электората различных российских политических партий на основе базы восьмой волны Европейского социального исследования, проведенного в 2016 г., и социологического теоретико-методологического подхода к изучению электорального поведения. Результаты применения этих методов приведены к форме комбинаций категорий; введены числовые критерии сравнения, благодаря чему выделен наиболее эффективный метод в двух типах аналитических задач: описании и прогнозировании. Согласно результатам исследования, в описательных задачах наиболее эффективен множественный анализ соответствий, а в задачах прогноза — логлинейный анализ. Последний вывод противоречит сложившемуся мнению о преимуществе CHAID в случаях наличия в данных какого-либо целевого признака и в связи с этим обладает высокой практической значимостью для дальнейшего развития идеи построения высокоточных прогностических моделей в социологических исследованиях. Благодарность. Публикация подготовлена в ходе проведения исследования «Обоснование преимуществ поиска эффектов взаимодействия и их учета в социологических регрессионных моделях» (№18-05-0031) в рамках Программы «Научный фонд Национального исследовательского университета «Высшая школа экономики» (НИУ ВШЭ)» в 2018 г. и в рамках государственной поддержки ведущих университетов Российской Федерации «5-100».

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom