Withania Somnifera: Correlation of Phytoconstituents with Hypolipidemic and Cardioprotective Activities
Author(s) -
Subasini Uthirapathy,
Tara F. Tahir
Publication year - 2021
Publication title -
aro-the scientific journal of koya university
Language(s) - English
Resource type - Journals
eISSN - 2410-9355
pISSN - 2307-549X
DOI - 10.14500/aro.10844
Subject(s) - chemistry , withania somnifera , antioxidant , catalase , phytochemical , glutathione , traditional medicine , hyperlipidemia , herb , glutathione peroxidase , pharmacology , cholesterol , biochemistry , enzyme , medicinal herbs , endocrinology , medicine , diabetes mellitus , alternative medicine , pathology
Withania somnifera (WS) (Dunal) or Ashwagandha is a well-known hypolipidemic herb and antioxidant. In this study, 75% ethanolic extract of WS is attempted to evaluate the cardioprotective activity of isoproterenol-induced cardiotoxicity and hypolipidemic activity in Triton WR 1339-induced hyperlipidemia. In addition, phytochemical evaluation of the same extracts analyzed by gas chromatography–mass spectrometer (GC–MS). This study found that 7 days of therapy with WS extracts at 1000 mg/kg b.wt. reduced cholesterol by 76%, low-density lipoprotein (LDL) by 71%, and TAG by 12% (P < 0.05). Furthermore, it can significantly reduce cholesterol and LDL levels (P < 0.05). Similarly, the use of 50 mg/kg b.wt. of WS extract showed a cardioprotective effect against isoproterenol-induced cardiac toxic rats. The antioxidants glutathione, glutathione peroxidase, and catalase are increased in WS extract (P < 0.05), whereas the release of cardiac indicators in heart tissue is reduced (P < 0.05). Furthermore, a 30-day treatment with WS also reduced triacylglycerol in isoprenaline-induced cardiotoxic rats. GC–MS analysis of the methanol fraction of the Ashwagandha 70% ethanolic extract showed the presence of higher concentrations of fatty acids. In conclusion, WS showed hypolipidemic and cardioprotective activities in diseased animals induced by isoproterenol and Triton WR 1339.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom