Open Access
К проблеме единственности решения задачи Коши для уравнения дробной диффузии с оператором Бесселя
Author(s) -
Фатима Гидовна Хуштова,
Фатима Гидовна Хуштова
Publication year - 2018
Publication title -
vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ: fiziko-matematičeskie nauki/vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ fiziko-matematičeskie nauki
Language(s) - Russian
Resource type - Journals
eISSN - 2310-7081
pISSN - 1991-8615
DOI - 10.14498/vsgtu1639
Subject(s) - environmental science
Рассматривается уравнение дробной диффузии с сингулярным оператором Бесселя, действующим по пространственной переменной, и оператором дробного дифференцирования Римана - Лиувилля, действующим по временной переменной. Когда порядок дробной производной равен единице, а особенность у оператора Бесселя отсутствует, рассматриваемое уравнение совпадает с классическим уравнением теплопроводности. Ранее для уравнения дробной диффузии с оператором Бесселя было построено решение задачи Коши и доказана теорема единственности решения в классе функций экспоненциального роста. Построен пример, показывающий, что увеличение показателя степени в условии, гарантирующем единственность решения задачи Коши, влечет за собой неединственность решения. С помощью известных свойств функции Райта получены оценки для построенной функции. Показывается, что она, будучи не равной тождественно нулю, удовлетворяет однородному уравнению и однородному условию Коши.