Open Access
Модальная идентификация граничного воздействия в двумерной обратной задаче теплопроводности
Author(s) -
É. Ya. Rapoport,
Рапопорт Эдгар Яковлевич,
A. N. Diligenskaya,
Дилигенская Анна Николаевна
Publication year - 2018
Publication title -
vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ: fiziko-matematičeskie nauki/vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ fiziko-matematičeskie nauki
Language(s) - Russian
Resource type - Journals
eISSN - 2310-7081
pISSN - 1991-8615
DOI - 10.14498/vsgtu1627
Subject(s) - computer science , matlab , programming language
Предлагается метод приближенного решения двумерной граничной обратной задачи теплопроводности на компактном множестве непрерывных вместе со своими первыми производными функций, позволяющий восстановить граничное воздействие, зависящее от времени и пространственной координаты. Используется модальное описание объекта в форме бесконечной системы линейных дифференциальных уравнений относительно коэффициентов разложения температурного поля в ряд по собственным функциям исследуемой начально-краевой задачи. Такой подход приводит к восстановлению искомой величины плотности теплового потока в виде взвешенной суммы конечного числа ее модальных составляющих. Их значения определяются по значениям временных мод температурного поля, которые находятся на основе его модального представления из экспериментальных данных. Использование математической модели объекта в пространстве изображений по Лапласу и метода конечных интегральных преобразований приводит к описанию идентифицируемых воздействий и температурного поля в форме их разложений в ряды по собственным функциям одинаковой пространственной размерности и формированию на этой основе замкнутой системы уравнений относительно искомых величин. Решена задача планирования температурных измерений, обеспечивающая на линии контроля в конечный момент интервала идентификации минимизацию ошибки аппроксимации экспериментального температурного поля его модельным представлением в равномерной метрике оценивания температурных невязок. Предложенный подход позволяет построить последовательность приближений, равномерно сходящихся с увеличением числа учитываемых модальных составляющих, к искомому решению. Численное решение задачи реализовано в среде имитационного моделирования динамических систем Simulink MATLAB$^\circledR$ и показало удовлетворительную точность решения задачи.