
Построение операторного исчисления Микусинского на основе алгебры свертки обобщенных функций. Решение задач математической физики
Author(s) -
Коган Иосиф Леонидович
Publication year - 2018
Publication title -
vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ: fiziko-matematičeskie nauki/vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ fiziko-matematičeskie nauki
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.302
H-Index - 2
eISSN - 2310-7081
pISSN - 1991-8615
DOI - 10.14498/vsgtu1569
Subject(s) - physics , combinatorics , mathematics
Дается новое обоснование операторного исчисления Микусинского, целиком основанное на алгебре свертки обобщенных функций $D'_{+}$ и $D'_{-}$, применительно к решению линейных уравнений в частных производных с постоянными коэффициентами в области $(x;t)\in \mathbb R $ $( \mathbb R_{+} )\times \mathbb R_{+} $. Используемый математический аппарат основан на современном состоянии теории обобщенных функций, и одним из основных его отличий от теории Микусинского является то, что получаемые изображения являются аналитическими функциями комплексного переменного. Это позволяет в алгебре $D'_+ (x\in \mathbb R_{+})$ узаконить преобразование Лапласа, а с применением алгебры $D'_{-}$ распространить метод на область отрицательных значений аргумента. На классических примерах уравнений второго порядка гиперболического и параболического типа в случае $x\in \mathbb R$ излагаются вопросы определения фундаментальных решений и задачи Коши, а на отрезке и полупрямой $x\in \mathbb R_+ $ - нестационарные задачи в собственном смысле. Дается вывод общих формул для получения решения задачи Коши, а также схема определения фундаментальных решений операторным методом. При рассмотрении нестационарных задач приводится компактное доказательство теоремы Дюамеля и выведены формулы, позволяющие оптимизировать получение решений, в том числе с разрывными начальными условиями. Для нахождения оригиналов приводятся примеры использования рядов сверточных операторов обобщенных функций. Предложенный подход по сравнению с классическим операционным исчислением, основанным на преобразовании Лапласа, и теорией Микусинского, обладая для обычных функций одинаковыми соотношениями «оригинал-изображение» на положительной полуоси, позволяет рассматривать уравнения, заданные на всей оси, упростить получение и форму представления решений. Приведенные примеры иллюстрируют возможности и дают оценку эффективности использования операторного исчисления.