z-logo
open-access-imgOpen Access
Оценка порядка аппроксимации матричного метода численного интегрирования краевых задач для систем линейных неоднородных обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами. Сообщение 2. Краевые задачи с граничными условиями второго и третьего рода
Author(s) -
Владимир Николаевич Маклаков,
Маклаков Владимир Николаевич
Publication year - 2017
Publication title -
vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ: fiziko-matematičeskie nauki/vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ fiziko-matematičeskie nauki
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.302
H-Index - 2
eISSN - 2310-7081
pISSN - 1991-8615
DOI - 10.14498/vsgtu1528
Subject(s) - mathematics
Представлено второе сообщение цикла из двух статей, в котором исследованы закономерности изменения порядка аппроксимации матричного метода численного интегрирования в зависимости от используемой степени в разложении в многочлен Тейлора решений краевых задач для систем обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами с граничными условиями второго и третьего рода.Использование многочлена Тейлора второй степени при аппроксимации производных конечными разностями приводит ко второму порядку аппроксимации традиционного метода сеток во внутренних точках области интегрирования. В работе при исследовании краевых задач для систем обыкновенных дифференциальных уравнений второго порядка рассмотрен предложенный ранее метод численного интегрирования, использующий средства матричного исчисления, в котором аппроксимация производных конечными разностями не производилась. Согласно указанному методу при составлении системы разностных уравнений степень многочлена Тейлора может быть выбрана произвольно. Вычислена невязка и дана оценка порядка аппроксимации метода в зависимости от выбранной степени многочлена Тейлора. Теоретически установлено следующее:a) для краевых задач с граничными условиями второго и третьего родапорядок аппроксимации пропорционален используемой степени многочлена Тейлора и меньше этой степени, независимо от ее четности, на единицу;б) при четной степени порядок аппроксимации в граничных точках области интегрирования на единицу меньше порядка аппроксимации во внутренних точках;в) при нечетной степени порядки аппроксимации в граничных точках и во внутренних точках области интегрирования совпадают и меньше этой степени на единицу.Для четной степени дан метод повышения порядка аппроксимации на единицу в граничных точках области интегрирования до порядка аппроксимации во внутренних точках.Теоретические выводы подтверждены численным экспериментом для краевых задач с граничными условиями третьего рода.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here