z-logo
open-access-imgOpen Access
The design of the electromagnetic aluminum mold of periodic action
Author(s) -
A. A. Bazarov,
Базаров Александр Александрович,
A. A. Navasardyan,
Навасардян Ашот Александрович,
N. V. Bondareva,
Бондарева Наталья Викторовна
Publication year - 2021
Publication title -
vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ: tehničeskie nauki/vestnik samarskogo gosudarstvennogo tehničeskogo universiteta. seriâ, tehničeskie nauki
Language(s) - English
Resource type - Journals
eISSN - 2712-8938
pISSN - 1991-8542
DOI - 10.14498/tech.2021.2.7
Subject(s) - ingot , induction heating , materials science , inductor , electromagnetic field , aluminium , work (physics) , crucible (geodemography) , electromagnetic induction , mechanics , composite material , crystallization , electromotive force , mechanical engineering , electromagnetic coil , thermodynamics , electrical engineering , chemistry , physics , engineering , computational chemistry , alloy , quantum mechanics , voltage
This publication discusses a set of issues on computer modeling of electromagnetic and thermal processes in an induction crystallizer of an aluminum melt, in which forces are created between the melt and the inductor coil, compressing the column of liquid material and preventing direct contact of the melt with the crucible walls. In known induction systems using electromagnetic pressure on molten metal, for crystallization, the parameters of the inductor are selected so that, with sufficient force, the temperature does not rise due to internal sources of heat release with sufficient water cooling of the surface. In the proposed work, heat removal mainly occurs through contact with a water-cooled support surface. The aim of the work is to determine the process parameters at which the required electromagnetic force is formed on the melt wall, taking into account the change in the current density at the interface between the solid and liquid phases of aluminum. When determining the parameters of induction crystallizers, the temperature dependences of the thermophysical properties were used. Variants of the inductor realization are investigated, which makes it possible to cover the entire volume of the melt, inside which significant changes in the electrical conductivity of aluminum and the power of internal heat sources are observed. Obtaining a cylindrical shape of the ingot, in contrast to the known electromagnetic crystallizers, is achieved by determining the design of the inductor, which provides a decrease in the repulsive electromagnetic force acting on the side surface of the melt in height. The results of the study showed the possibility of using the crystallizer at various ratios of the height and diameter of the melt column, and the intensity of cooling. The efficiency of the process for aluminum increases with an increase in the radius of the melt column, which also leads to a decrease in shape distortion in the region of the upper end.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here