z-logo
open-access-imgOpen Access
Simulation Investigations of High Power Overmoded Relativistic Backward Wave Oscillator with Trapezoidal Resonant Reflector
Author(s) -
V. Venkata Reddy,
M. A. Ansari,
M. Thottappan
Publication year - 2021
Publication title -
defence science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.198
H-Index - 32
eISSN - 0976-464X
pISSN - 0011-748X
DOI - 10.14429/dsj.71.16745
Subject(s) - reflector (photography) , backward wave oscillator , physics , particle in cell , power (physics) , optics , cathode ray , relativistic electron beam , energy conversion efficiency , cathode , computational physics , electrical engineering , electron , optoelectronics , engineering , nuclear physics , light source , quantum mechanics
An S-band high power relativistic backward wave oscillator using a trapezoidal resonant reflector and overmoded slow-wave structure is demonstrated by finite difference time domain based Particle-In-Cell code. The trapezoidal resonant reflector and slow-wave structure are chosen to improve the RBWO power handing capability to gigawatt (GW). The Trapezoidal resonant reflector enhances the pre-modulation during electron beam propagation, thus increasing the generated RF signal overall efficiency and coherency. The particle-in-cell simulation generated an RF output power ~5.4 GW in TM01 mode at ~3.6 GHz in a 2.0 T magnetic field and developed a 13.5 kA current for a 1.2 MV DC cathode voltage. The power conversion efficiency is achieved as ~33 %. Further, the influence of different design parameters on frequency, RF output power, and efficiency are analysed through Particle-In-Cell simulations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom