
Modified Low Rank Approximation for Detection of Weak Target by Noise space Exploitation in Through Wall Imaging
Author(s) -
Mandar K. Bivalkar,
Bambam Kumar,
Dharmendra Singh
Publication year - 2019
Publication title -
defence science journal/defence science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.198
H-Index - 32
eISSN - 0976-464X
pISSN - 0011-748X
DOI - 10.14429/dsj.69.14952
Subject(s) - singular value decomposition , noise (video) , subspace topology , noise reduction , rank (graph theory) , algorithm , space (punctuation) , mathematics , computer science , physics , artificial intelligence , image (mathematics) , combinatorics , operating system
Low dielectric materials referred as weak targets are very difficult to detect behind the wall in through wall imaging (TWI) due to strong reflections from wall. TWI Experimental data collected for low dielectric target behind the wall and transceiver on another side of the wall. Recently several researchers are using low-rank approximation (LRA) for reduction of random noise in the various data. Explore the possibilities of using LRA for TWI data for improving the detection of low dielectric material. A novel approach using modification of LRA with exploiting the noise subspace in singular value decomposition (SVD) to detect weak target behind the wall is introduced. LRA consider data has low rank in f-x domain for noisy data, local windows are implemented in LRA approach to satisfy the principle assumptions required by the LRA algorithm itself. Decomposed TWI data in the noise space of the SVD to detect the weak target adaptively. Results for modified LRA for detection of weak target behind the wall are very encouraging over LRA.