z-logo
open-access-imgOpen Access
Quercetin 3 Rutinoside Facilitates Protection Against Radiation Induced Genotoxic and Oxidative Damage A Study in C57bl 6 Mice
Author(s) -
Savita Verma,
A. Dutta
Publication year - 2021
Publication title -
defence life science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.135
H-Index - 3
eISSN - 2456-379X
pISSN - 2456-0537
DOI - 10.14429/dlsj.6.16219
Subject(s) - chemistry , oxidative stress , lipid peroxidation , malondialdehyde , reactive oxygen species , glutathione , antioxidant , bone marrow , pharmacology , oxidative phosphorylation , dna damage , biochemistry , biology , immunology , enzyme , dna
Radiation-induced oxidative stress and haematopoietic genomic instability is the major concern during planned or unplanned exposure. Use of the natural phytochemicals is an emerging strategy to prevent from the harmful effects of radiation. In the current investigation, Quercetin 3-Rutinoside (Q-3-R), a polyphenolic bioflavonoid, has been evaluated against gamma radiation (2Gy) induced genotoxic damage and oxidative imbalance in mice. Mice were administered with Q-3-R (10mg/kg body weight) 1hr prior to irradiation and evaluated for its antioxidant potential. Anti-genotoxic potential was assessed in terms of chromosomal aberrations in bone marrow cells. Findings revealed that Q-3-R had very high reducing potential, effectively scavenged 1,1-Diphenyl-2-picryl hydrazyl (DPPH) and hydrogen peroxide radicals, chelated metal ions and inhibited lipid peroxidation in a dose dependant manner. The glutathione (GSH) levels were found elevated (p<0.05), while reduced malondialdehyde (MDA) levels were seen in blood and liver tissues of Q-3-R pretreated mice. Significant (p<0.01) reduction in Reactive Oxygen Species (ROS) levels and radiation induced aberrations (dicentrics, rings, fragments, end to end association, robertsonian translocation) following Q-3-R pretreatment was found in bone marrow cells. The present findings demonstrate that Q-3-R can effectively minimise radiation-induced genotoxic and oxidative damages and can be explored further to be used as a potent radioprotector in humans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here