z-logo
open-access-imgOpen Access
Operator Linear-2 Terbatas pada Ruang Bernorma-2 Non-Archimedean
Author(s) -
Burhanudin Arif Nurnugroho,
Supama Supama,
Atok Zulijanto
Publication year - 2019
Publication title -
jurnal fourier/jurnal fourier
Language(s) - English
Resource type - Journals
eISSN - 2541-5239
pISSN - 2252-763X
DOI - 10.14421/fourier.2019.82.43-50
Subject(s) - banach space , bounded operator , mathematics , bounded function , pure mathematics , normed vector space , linear operators , operator theory , space (punctuation) , operator (biology) , mathematical analysis , computer science , operating system , biochemistry , chemistry , repressor , transcription factor , gene
Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X  ruang bernorma-2 non-Archimedean dan  ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean. [In this paper we construct  bounded 2-linear operators from X2  to Y, where X is non-Archimedean 2-normed spaces and  is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y  , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here