z-logo
open-access-imgOpen Access
Optimum Design of Phosphorus and Nitrogen Removal from Domestic Wastewater Treatment Plant
Author(s) -
Ali Hadi Ghawi
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i4.20.25945
Subject(s) - phosphorus , sewage treatment , wastewater , environmental science , irrigation , nitrogen , sewage , environmental engineering , waste management , pulp and paper industry , chemistry , agronomy , engineering , organic chemistry , biology
In this study, a sewage treatment plant was designed for the city of Al-Nasiriyah in Dhi Qar governorate in southern Iraq serving 316083 inhabitants. The resulting treated water is suitable for agricultural irrigation and can be discharged to the Euphrates River when needed by adding nitrogen and phosphorus removal units to the wastewater treatment plant. The obtained plant design has been verified and optimized by implementing the proposed plant layout in the GPS-X 5.0 modeling and simulation software (Hydromantis). Where the results of the design showed that the total phosphorus flow is higher than the desired limit of 2 mg / L, due to the excessive release during anaerobic digestion. Control of phosphorus concentration can be controlled by adding chemicals (iron or aluminum salts) in different parts of the wastewater treatment plant. In this case, two different control strategies can be implemented: adding aluminum doses in both water and sludge lines (at Chem1 and Chem2 points) or adding aluminum doses in the water line only (at point Chem2). The second strategy showed that it is the most efficient in controlling the concentration of phosphorus and nitrogen produced, which meets the limits of the Iraqi standard of water used in irrigation.  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here