z-logo
open-access-imgOpen Access
A parallel distributed compensation approach to fuzzy control of spacecraft combined attitude and sun tracking
Author(s) -
Yew-Chung Chak,
Renuganth Varatharajoo
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i4.13.21324
Subject(s) - spacecraft , control theory (sociology) , attitude control , fuzzy logic , computer science , nonlinear system , controller (irrigation) , fuzzy control system , kinematics , stewart platform , control engineering , engineering , control (management) , artificial intelligence , aerospace engineering , physics , agronomy , classical mechanics , quantum mechanics , biology
A spacecraft combined attitude and sun tracking system (CASTS) is a synergized system in which solar array drive assemblies are used as sun trackers and simultaneously as attitude control actuators. This paper, a continuous research on CASTS, addresses its attitude control problem. The kinematics and dynamics equations of a rigid spacecraft attitude motion is inherently nonlinear. In the attitude regulation problem, the attitude motion can be treated as a simple linear system for a constrained range of operating conditions, but it has impacts on the accuracy of the linear model when a model-based controller is implemented. Naturally, this is a compromise between simplicity and accuracy that all design engineers have to face. In this paper, we present a systematic approach to improve the accuracy while preserving the model as linear as possible, by deriving a quasi-linear approximation of a nonlinear spacecraft attitude motion. The quasi-linear approximation is based on the framework of the Takagi–Sugeno (T–S) fuzzy model. If a spacecraft can be modeled in the form of a rule-based T-S fuzzy system that acts as an interpolator between linear state-space systems, an approach called parallel distributed control (PDC) can be used to stabilize the attitude motion. The design philosophy of PDC is to create a simple fuzzy controller, where each rule’s consequent is a control law designed to stabilize the linear system in the corresponding consequent of the spacecraft T-S fuzzy system. Numerical results validate that the attitude and sun-tracking performances are achievable using the proposed PDC strategy. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here