
Fractional Calculus and Fuzzy Rule Based Filter for Despeckling the Medical Images
Author(s) -
P Nageswari,
Shivnesh Rajan,
K. Manivel
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i4.10.21312
Subject(s) - speckle noise , artificial intelligence , noise reduction , pixel , filter (signal processing) , computer science , speckle pattern , fuzzy logic , computer vision , preprocessor , noise (video) , non local means , medical imaging , median filter , pattern recognition (psychology) , image processing , image (mathematics)
Medical ultrasound imaging plays an important role in diagnosis of various complicated disorders. But, these ultrasound images are intrinsically degraded with speckle noise which harshly affects the image visual qualities and essential particulars. Hence, denoising is an unavoidable process in medical image processing. In this paper, a new despeckling technique is presented for denoising the medical ultrasound images by employing fuzzy technique on co-efficient of variation and fractional order integration filter. The proposed technique has two steps. During first step, the noisy image pixels are classified into three regions by using fuzzy technique on co-efficient of variation and consequently, the proposed technique adaptively employs appropriate filters on the grouped pixels to reduce noise in the ultrasound image. In the second step, to obtain an effective denoising image, the fractional order integration filter is applied on the resulting image of step 1. The performance of the proposed technique is tested on various medical images in terms of Peak signal to noise ratio and speckle suppression index quality measures. Experimental results reveal that the proposed despeckling technique can efficiently reduce the speckle noise, protect the edges and preserves any other important structural details of an image. It is suggested that the proposed technique is employed as a preprocessing tool for medical image analysis and diagnosis.