
A novel Approach Using “Supervised and Unsupervised learning” to prevent the Adequacy of Intrusion Detection Systems
Author(s) -
Pradeep Kumar Mallick,
Banalata Mohanty,
Sudan Jha,
Kuhoo
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i3.34.19362
Subject(s) - computer science , intrusion detection system , artificial intelligence , machine learning , classifier (uml) , the internet , supervised learning , expansive , unsupervised learning , field (mathematics) , confidentiality , computer security , world wide web , artificial neural network , compressive strength , materials science , mathematics , pure mathematics , composite material
Countering digital dangers, particularly assault detection, is a testing region of research in the field of data affirmation. Intruders utilize polymorphic instruments to disguise the assault payload and dodge the detection methods. Many supervised and unsupervised learning comes closer from the field of machine learning and example acknowledgments have been utilized to expand the adequacy of intrusion detection systems (IDSs). Supervised learning approaches utilize just marked examples to prepare a classifier, however getting adequate named tests is lumbering, and requires the endeavors of area specialists. Notwithstanding, un-marked examples can without much of a stretch be acquired in some genuine issues. Contrasted with super-vised learning approaches, semi-supervised learning (SSL) addresses this issue by considering expansive number of unlabeled examples together with the marked examples to fabricate a superior classifier. In today’s age security is a big issue and every day when we are on the internet we are exposed to a huge number of threats where our personal information can be leaked. The information security and the Intrusion Detection System (IDS) play a critical role in the internet. IDS isan essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality, and system availability against possible threats. In this paper, we are proposing a modified Elitist approach where the value of fitness is multiplied by the times a variable which is determined on the basis of the value of Kappa (K).