
Development of Conductive Nanocomposite for Sensing Application
Author(s) -
Brijesh Prasad,
Varij Panwar,
Mayank Chaturvedi,
Vikash Rathi,
Fateh Singh Gill,
Kapil Sharma,
Pravin P. Patil
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i3.12.17625
Subject(s) - materials science , electrical conductor , composite material , conductive polymer , nanocomposite , composite number , polymer , conductivity , chemistry
Carbonaceous compounds being conductive in nature have proved themselves as the best conductive network assembly material with Poly (vinylidene fluoride) (PVDF) polymer matrix which forms dielectric medium. Carbon based compounds are conductive in nature and are being used to form conductive channels for the flow of charge for the application of health as soft electronic devices and smart flexible conducting thin films in the form of sensors and actuators. Carbon nano fibers (CNF) play role of conductive filler to form conductive networks for the flow of charge in the polymer matrix. The interesting thing about CNF is its tailorable concentration. It influences the mechanical and electrical properties with different weight percent. In the present study solvent casting technique is used for the development of composite membrane, which is easy to fabricate and less costly. An increase in CNF content leads to deterioration of young’s modulus in comparison with pure PVDF, while with the infiltration of CNF in different quantities increases toughness and overall mechanical strength of the polymer composite of PVDF-CNF. CNF helped in increasing the electrical conductivity of the samples by entrapping in between the matrix and helping in bridge formation for the charge flow. The obtained conductive membrane showed low resistance, good electrical properties and high conductivity. The conductive film can be utilized as a conductive medium as it was able to glow the LED bulb at very low voltage of 2 V with drop of 1.8 V.