
R2RS: schema-based relational databases mapping to linked datasets
Author(s) -
Ju Ri Kim,
Sung Kook Han
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i2.33.13868
Subject(s) - sparql , computer science , rdf , sql , rdf query language , star schema , information retrieval , rdf schema , linked data , relational database , schema (genetic algorithms) , database , data mining , database schema , semantic web , database design , web search query , web query classification , search engine
Background/Objectives: The vast amounts of high-quality data stored in relational databases (RDB) is the primary resources for Linked Open Data (LOD) datasets. This paper proposes a schema-based mapping approach from RDB to RDF, which provides succinct and efficient mapping.Methods/Statistical analysis: The various approaches, languages and tools for mapping RDB to LOD have been proposed in the recent years. This paper surveys and analyzes classic mapping approach and language such as Direct Mapping and R2RML. The mapping approaches can be categorized by means of their data modeling. After analyzing the conventional RDB-RDF mapping methods, this paper proposes a new mapping method and discusses its typical features and applications.Findings: There are two types of mapping approaches for the translation of RDB to RDF: instance-based and schema-based mapping approaches. The instance-based mapping approaches generate large amounts of RDF graphs by means of mapping rules. These approaches causes data redundancy since the same data is stored in two ways of RDB and RDF. It is very easy to bring the data inconsistence problem when data update operations occur. The schema-based mapping approaches can effectively avoid data redundancy since the mapping can be accomplished in the conceptual schema level.The architecture of SPARQL endpoint based on schema mapping approach consists of five phases:Generation of mapping description based on mapping rules.SPARQL query statements for RDF graph patterns.Translation of SPARQL query into SQL query.Execution of SQL query in RDB.Interpretation of SQL query result into JSON-LD format.Experiments show the schema-based mapping approach is a straightforward, succinct and efficient mapping method for RDB2RDF.Improvements/Applications: This paper proposes a schema-based mapping approach called R2RS, which shows better performance than the conventional mapping methods. In addition, R2RS also provides the efficient implementation of SPARQL endpoint in RDB.