
A Novel Approach for Prediction of Heart Disease: Machine Learning Techniques
Author(s) -
V. Sesha Srinivas,
K Aditya,
G Prasanth,
R. G. Babukarthik,
S. Satheeshkumar,
G. Sambasivam
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i2.32.15380
Subject(s) - backpropagation , machine learning , computer science , artificial intelligence , artificial neural network , field (mathematics) , cloud computing , process (computing) , online machine learning , deep learning , heart disease , algorithm , mathematics , medicine , pure mathematics , cardiology , operating system
Heart disease and machine learning are the two different words where one is related to medical field and another one to artificial intelligence. In medical filed most of them are facing the problems with the heart disease and machine learning is developing area in computer science. Heart disease is general called cardiac disease where it gives the more data or information, it is to be collected to give the reports for the patients and the machine learning also requires the data for predicting and to solve the problems. Machine learning techniques are used in prediction of heart diseases where it gives the faster prediction with less computation time and better accuracy to progress their health. Heart disease prediction requires lot of data for predicting and in cloud computing also we have more data and the data available in cloud it is difficult to analyze. So we use machine learning algorithms or techniques to predict the heart disease and the in the similar way we can apply these algorithms or techniques to predict or analyze the data that is available in cloud. In this paper we are going to use machine learning algorithms called Backpropagation Algorithm and later we use optimization algorithm later. Backpropagation algorithm deals with the artificial neural networks. Backpropagation is a method used to calculate the error contribution of each neuron after a batch of data (in image recognition, multiple images) is processed. This is used by an enveloping optimization algorithm to adjust the weight of each neuron, completing the learning process for that case. Machine learning algorithms and techniques are used for recognize the intensity of risk issues in humans and it helps the patients to take safety measures in well advances to save the patient’s life.