z-logo
open-access-imgOpen Access
EMOPS: an enhanced multi-objective pswarm based classifier for poorly understood cancer patterns
Author(s) -
S. Subasree,
N. P. Gopalan,
N. Sakthivel
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i2.27.12102
Subject(s) - computer science , artificial intelligence , classifier (uml) , support vector machine , machine learning , data mining , pattern recognition (psychology)
Microarray based Cancer Pattern Classification is one of the popular techniques in Bioinformatics Research. This Research Work is noticed that for studying the expression levels through the Gene Expression profiling experiments, thousands of Genes have to be simultaneously studied to understand the patterns of the Gene Expression or Cancer Pattern. This research work proposed an efficient Cancer Pattern Clas-sifier called An Enhanced Multi-Objective Pswarm (EMOPS) and it is studied thoroughly in terms of Memory Utilization, Execution Time (Processing Time), Sensitivity, Specificity, Classification Accuracy and FScore. The results were compared with the recently proposed classifiers namely Hybrid Ant Bee Algorithm (HABA), Kernelized Fuzzy Rough Set Based Semi Supervised Support Vector Machine (KFRS-S3VM) and Multi-objective Particle Swarm Optimization (MPSO). For analyzing the performances of the proposed model, this work considered a few cancer patterns namely Bladder, Breast, Colon, Endometrial, Kidney, Leukemia, Lung, Melanoma, Mom-Hodgkin, Pancreatic, Prostate and Thyroid. From our experimental results, it was noticed that the proposed model outperforms the identified three classifiers in terms of Memory Utilization, Execution Time (Processing Time), Sensitivity, Specificity, Classification Accuracy and FScore. To improve the performance of the system further in term of Processing Time, the proposed model Enhanced Multi-Objective Pswarm (EMOPS) is implemented under Parallel Framework and evaluated. That is the model is tested with Two, Four, Eight and Sixteen Parallel Processors and from the results, it is established that the Processing Time decreases considerably which will improve the performance of the Proposed Model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here