z-logo
open-access-imgOpen Access
Land cover classification using landsat-8 optical data and supervised classifiers
Author(s) -
K. Venugopala Rao,
Preetam Kumar
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i2.17.11567
Subject(s) - land cover , remote sensing , vegetation (pathology) , satellite , land use , environmental science , satellite imagery , agricultural land , agriculture , change detection , physical geography , geography , ecology , engineering , biology , medicine , archaeology , pathology , aerospace engineering
Land use and land cover information of an area has got importance in various aspects mainly because of various development activities that are taking place in every part of the world. Various satellite sensors are providing the required data collected by remote sensing techniques in the form of images using which the land use land cover information can be analyzed.  Constistency of Landsat satellite is illustrated with two time periods such as Operational Land Imager (OLI) of 2013 and consecutive 2014 procured by earth explorer with quantified changes for the same period in visakhapatnam of hudhud cyclone. Since this city is consisting of mainly urban, vegetation, few water bodies, some area of agriculture and barren,five classes have been chosen from the study area. The results indicate that due to the hudhud event some changes took place.  vegetation and built-up land have been increased by An increase of 19.1% (6.3 km2) and 11% (5.36 km2) has been observed in the case of vegetation and built up area  where as a decrease of 1.2% (4.06 km2), 6.1% (1.70 km2) and 1.2% (0.72 km2) has been observed in the case of  agriculture, barren land, and water body respectively. With the help of available satellite imagery belonging to the same area and of different time periods along with the  change detection techniques landscape dynamics have been analyzed. Using various classification algorithms along with the data available from the satellite sensor the land use and land cover classification information of the study area has been obtained. The maximum likelihood algorithm provided better results compared to other classification techniques and the accuracy achieved with this algorithm is 99.930% (overall accuracy) and 0.999 (Kappa coefficient).  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here