z-logo
open-access-imgOpen Access
Facial region detection robust to changing backgrounds
Author(s) -
Seok-Woo Jang,
Siwoo Byun
Publication year - 2018
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i2.12.11028
Subject(s) - artificial intelligence , computer vision , computer science , face detection , robot , face (sociological concept) , object detection , perception , skin color , pattern recognition (psychology) , facial recognition system , social science , neuroscience , sociology , biology
Background/Objectives: These days, many studies have actively been conducted on intelligent robots capable of providing human friendly service. To make natural interaction between humans and robots, it is required to develop the mobile robot-based technology of detecting human facial regions robustly in dynamically changing real backgrounds.Methods/Statistical analysis: This paper proposes a method for detecting facial regions adaptively through the mobile robot-based monitoring of backgrounds in a dynamic real environment. In the proposed method, a camera-object distance and a color change in object background are monitored, and thereby the skin color extraction algorithm most suitable for the measured distance and color is applied. In the face detection step, if the searched range is valid, the most suitable skin color detection method is selected so as to detect facial regions.Findings: To sum up the experimental results, algorithms have a difference in performance depending on a distance and a background color. Overall, the algorithms using neural network showed stable results. The algorithm using Kismet had a good perception rate for the ground truth part of an original image, and a skin color detection rate was greatly influenced by pink and yellow background colors similar to a skin tone, and consequently an incorrect perception rate of background was considerably high. With regard to each algorithm performance depending on a distance, the closer a distance with an object was to 320cm, the more an incorrect perception rate of a background sharply increased. To analyze the performance of each skin color detection algorithm applied to face detection, we examined how much a skin color of an original image was detected by each algorithm. For a skin color detection rate, after the ground truth for the skin of an original image, the number of pixels of the skin color detected by each algorithm was calculated. In this case, the ground truth means a range of the skin color of an original image to detect.Improvements/Applications: We expect that the proposed approach of detecting facial regionsin a dynamic real environment will be used in a variety of application areas related to computer vision and image processing.  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here