z-logo
open-access-imgOpen Access
CMOS Front-End of LNA for GPS and GSM wireless applications
Author(s) -
Mahesh Mudavath,
K. Hari Kishore
Publication year - 2017
Publication title -
international journal of engineering and technology
Language(s) - English
Resource type - Journals
ISSN - 2227-524X
DOI - 10.14419/ijet.v7i1.5.9069
Subject(s) - noise figure , electrical engineering , low noise amplifier , return loss , cmos , gsm , amplifier , wideband , impedance matching , telecommunications , rf front end , electronic engineering , engineering , computer science , radio frequency , electrical impedance , antenna (radio)
This paper describes a layout of a CMOS Low Noise Amplifier for reconfigurable packages which include GPS, GSM Wi-Fi applications. The improvement of a notably linear Radio front-stop, able to function with Galileo and GPS satellite signals suitable for coexisting in a mobile opposed environment for area based offerings, pleasing the fundamental necessities for a mass market product which includes low cost, low footprint, good accuracy, low strength intake and high sensitivity. primarily based on a wideband enter matching, the LNA stages cowl all band of hobby even as reaching a great change-off between excessive gain, low noise parent and coffee electricity intake. The complete simulation analysis of the circuit results in the frequency range of 1.4 GHz to 2 GHz. The noise figure is 1.8 dB at 1.4GHz and rises to 3.4 dB at 2 GHz. The input return and output return losses (S11, S22) of the LNA at a frequency range between 1.4 GHz and 2 GHz are S11= -12 dB, S22 =-44.73 dB at 1.77 GHz and S22 =-26.47 dB at 2 GHz. The overall gain of the LNA (S21) is 13 dB at 1.4025 GHz, 3rd order input intercept point (IIP3) = -3.16 dBm and -1dB compression point is -12.56 dBm. Input Impedance of 50Ω, 3dB Power Bandwidth of 450MHz, and Power Dissipation of 2.7mW at 1.2V power supply.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here