Open Access
Oligodendrocyte Precursor Cells Transplantation Improves Stroke Recovery via Oligodendrogenesis, Neurite Growth and Synaptogenesis
Author(s) -
Wanlu Li,
Tingting He,
Rubing Shi,
Yaying Song,
Liping Wang,
ZhiJun Zhang,
Yaohui Tang,
GuoYuan Yang,
Yongting Wang
Publication year - 2021
Publication title -
aging and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.808
H-Index - 54
ISSN - 2152-5250
DOI - 10.14336/ad.2021.0416
Subject(s) - synaptogenesis , neurite , transplantation , white matter , neuroscience , netrin , medicine , neural stem cell , axon , biology , microbiology and biotechnology , axon guidance , stem cell , biochemistry , radiology , magnetic resonance imaging , in vitro
Ischemic-induced white matter injury is strongly correlated with the poor neurological outcomes in stroke patients. The transplantation of oligodendrocyte precursor cells (OPCs) is an effective candidate for enhancing re-myelination in congenitally dysmyelinated brain and spinal cord. Nevertheless, mechanisms governing the recovery of white matter and axon after OPCs transplantation are incompletely understood in ischemic stroke. In this study, OPCs were transplanted into the ischemic brain at 7 days after transient middle cerebral artery occlusion (tMCAO). We observed improved behavior recovery and reduced brain atrophy volume at 28 days after OPCs transplantation. Moreover, our results identified that myelin sheath integrity and endogenous OPCs proliferation and migration were promoted after OPCs transplantation. By contrast, AMD3100, an antagonist of C-X-C chemokine receptor type 4, eliminated the beneficial effects of OPCs transplantation on white matter integrity and endogenous oligodendrogenesis. In addition, the improvement of neurite growth and synaptogenesis after OPCs transplantation in ischemic brain or OPC co-cultured neurons, potentially through the upregulation of Netrin-1, was indicated by increased protein levels of synaptophysin and postsynaptic density protein 95. Knockdown of Deleted in Colorectal Carcinoma, a receptor of Netrin-1, prevented increased neurite growth and synaptogenesis in neurons co-cultured with OPCs. In conclusion, our studies suggested that engrafted OPCs promoted the recovery after ischemic stroke by enhancing endogenous oligodendrogenesis, neurite growth, and synaptogenesis; the last two being mediated by the Netrin-1/DCC axis.