z-logo
open-access-imgOpen Access
MicroRNA-181c Exacerbates Brain Injury in Acute Ischemic Stroke
Author(s) -
Qingfeng Ma,
Haiping Zhao,
Zhen Tao,
Rongliang Wang,
Ping Liu,
Ziping Han,
Shubei Ma,
Yumin Luo,
Jianping Jia
Publication year - 2016
Publication title -
aging and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.808
H-Index - 54
ISSN - 2152-5250
DOI - 10.14336/ad.2016.0320
Subject(s) - medicine , microrna , stroke (engine) , ischemic stroke , pharmacology , bioinformatics , ischemia , gene , biology , biochemistry , mechanical engineering , engineering
MicroRNA-181 (miR-181) is highly expressed in the brain, and downregulated in miRNA expression profiles of acute ischemic stroke patients. However, the roles of miR-181c in stroke are not known. The clinical relevance of miR-181c in acute stroke patients was evaluated by real-time PCR and correlation analyses. Proliferation and apoptosis of BV2 microglial cells and Neuro-2a cells cultured separately or together under oxidative stress or inflammation were assessed with the Cell Counting Kit-8 and by flow cytometry, respectively. Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in C57/BL6 mice, and cerebral infarct volume, microglia activation, and expression of pro-apoptotic factors were evaluated by 2,3,5-triphenyl-2H-tetrazolium chloride staining, immunocytochemistry, and western blotting, respectively. Plasma levels of miR-181c were decreased in stroke patients relative to healthy individuals, and were positively correlated with neutrophil number and blood platelet count and negatively correlated with lymphocyte number. Lipopolysaccharide (LPS)/hydrogen peroxide (H 2 O 2 ) treatment inhibited BV2 microglia proliferation without inducing apoptosis, while miR-181c reduced proliferation but increased the apoptosis of these cells with or without LPS/H 2 O 2 treatment. LPS/H 2 O 2 induced apoptosis in Neuro-2a cells co-cultured with BV2 cells, an effect that was potentiated by miR-181c. In the MCAO model, miR-181c agomir modestly increased infarct volume, markedly decreased microglia activation and B cell lymphoma-2 expression, and increased the levels of pro-apoptotic proteins in the ischemic brain. Our data indicate that miR-181c contributes to brain injury in acute ischemic stroke by promoting apoptosis of microglia and neurons via modulation of pro- and anti-apoptotic proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom