
A note on entanglement classification for tripartite mixed states
Author(s) -
Hui Zhao,
Yu-Qiu Liu,
Zhi-Xi Wang,
Shao-Ming Fei
Publication year - 2022
Publication title -
acta polytechnica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.207
H-Index - 15
eISSN - 1805-2363
pISSN - 1210-2709
DOI - 10.14311/ap.2022.62.0222
Subject(s) - quantum entanglement , separable state , peres–horodecki criterion , separable space , mathematics , basis (linear algebra) , entanglement witness , pauli exclusion principle , multipartite entanglement , representation (politics) , principal (computer security) , set (abstract data type) , pauli matrices , squashed entanglement , bell state , pure mathematics , theoretical physics , quantum , quantum mechanics , quantum discord , physics , mathematical physics , computer science , mathematical analysis , law , geometry , political science , politics , programming language , operating system
We study the classification of entanglement in tripartite systems by using Bell-type inequalities and principal basis. By using Bell unctions and the generalized three dimensional Pauli operators, we present a set of Bell inequalities which classifies the entanglement of triqutrit fully separable and bi-separable mixed states. By using the correlation tensors in the principal basis representation of density matrices, we obtain separability criteria for fully separable and bi-separable 2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example is given to illustrate our criteria in classifying the tripartite entanglement.