
On generalized Heun equation with some mathematical properties
Author(s) -
Nasser Saad
Publication year - 2022
Publication title -
acta polytechnica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.207
H-Index - 15
eISSN - 1805-2363
pISSN - 1210-2709
DOI - 10.14311/ap.2022.62.0165
Subject(s) - mathematics , polynomial , orthogonal polynomials , recurrence relation , factorization , pure mathematics , differential equation , property (philosophy) , algebra over a field , simple (philosophy) , mathematical analysis , algorithm , philosophy , epistemology
We study the analytic solutions of the generalized Heun equation, (α0 + α1 r + α2 r2 + α3 r3) y′′ + (β0 + β1 r + β2 r2) y′ + (ε0 + ε1 r) y = 0, where |α3| + |β2|≠ 0, and {αi}3i=0, {βi}2i=0, {εi}1i=0 are real parameters. The existence conditions for the polynomial solutions are given. A simple procedure based on a recurrence relation is introduced to evaluate these polynomial solutions explicitly. For α0 = 0, α1≠ 0, we prove that the polynomial solutions of the corresponding differential equation are sources of finite sequences of orthogonal polynomials. Several mathematical properties, such as the recurrence relation, Christoffel-Darboux formulas and the norms of these polynomials, are discussed. We shall also show that they exhibit a factorization property that permits the construction of other infinite sequences of orthogonal polynomials.