z-logo
open-access-imgOpen Access
ANALYSIS OF THE PROPERTIES OF AW2099 ALUMINIUM-LITHIUM ALLOY WELDED BY LASER BEAM WITH AW5087 ALUMINIUM-MAGNESIUM FILLER MATERIAL
Author(s) -
Miroslav Sahul,
Miroslav Sahul,
Matej Pašák,
Milan Marônek
Publication year - 2019
Publication title -
acta polytechnica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.207
H-Index - 15
eISSN - 1805-2363
pISSN - 1210-2709
DOI - 10.14311/ap.2019.59.0580
Subject(s) - materials science , metallurgy , equiaxed crystals , welding , microstructure , indentation hardness , composite material , aluminium , heat affected zone
EN AW2099 aluminium lithium alloy, 2.0mm in thickness, was used as an experimental material. EN AW2099 belongs to the 3rd generation of aluminium lithium alloys. The third generation was developed to improve the disadvantages of the previous generation, such as anisotropy in mechanical properties, low fracture toughness, corrosion resistance and resistance to fatigue crack growth, as well. Aluminium magnesium 5087 filler wire with a diameter of 1.2mm was used for the welding. Crack free weld joints were produced after an optimization of welding parameters. The microstructure of weld metal and mechanical properties of weld joints were investigated. Equiaxed zone (EQZ) was observed at the fusion boundary. The character of grains changed in the direction towards the weld centre, from the columnar dendrite zone to equiaxed dendrite zone in the weld centre. The microstructure of the weld metal matrix consisted of -aluminium. Alloying elements enrichment was found at the inter-dendritic areas, namely copper and magnesium. The microhardness decrease in the weld metal due to a dissolution of strengthening precipitates was measured. The microhardness was slightly higher in comparison to a weld produced by a laser welding without a filler material. The tensile strength of the weld joint reached around 67% of the base material’s strength and the fracture occurred in the weld metal.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here