
Determining the Permeable Efficiency of Elements in Transport Networks
Author(s) -
V. Svoboda,
D. Šiktancová
Publication year - 2001
Publication title -
acta polytechnica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.207
H-Index - 15
eISSN - 1805-2363
pISSN - 1210-2709
DOI - 10.14311/216
Subject(s) - transport network , node (physics) , flow network , permeability (electromagnetism) , computer science , relocation , chemistry , computer network , engineering , mathematical optimization , mathematics , membrane , biochemistry , structural engineering , programming language
The transport network is simulated by a directed graph. Its edges are evaluated by length (in linear units or time units), by permeability and by the cost of driving through in a transport unit. Its peaks (nodes) are evaluated in terms of permeability, the time of driving through the node in time units and the cost of driving a transport unit (set) through this node.For such a conception of the transport network a role of optimisation and disintegration of transport flow was formulated, defined by a number of transport units (transport sets). These units enter the network at the initial node and exit the network (or vanish at the defined node). The aim of optimization was to disintegrate the transport flow so that the permeability was not exceeded in any element of the network (edge, nod), so that the relocation of the defined transport flow was completed in a prearranged time and so that the cost of driving through the transport net between the entry and exit knots was minimal.