z-logo
open-access-imgOpen Access
Physical and Electrical Properties of Yttria-Stabilized Zirconia Thin Films Prepared by Radio Frequency Magnetron Sputtering
Author(s) -
Д. А. Голосов,
Sergey M. Zavatskiy,
Sergey N. Melnikov
Publication year - 2013
Publication title -
acta polytechnica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.207
H-Index - 15
eISSN - 1805-2363
pISSN - 1210-2709
DOI - 10.14311/1743
Subject(s) - yttria stabilized zirconia , materials science , cubic zirconia , electrical resistivity and conductivity , sputter deposition , cavity magnetron , amorphous solid , annealing (glass) , thin film , atmospheric temperature range , analytical chemistry (journal) , composite material , sputtering , nanotechnology , crystallography , electrical engineering , ceramic , chemistry , physics , chromatography , meteorology , engineering
This paper presents the electrophysical characteristics of a 7 mol.% yttria-stabilized zirconia (YSZ) thin film deposited by radio-frequency magnetron sputtering. In order to form the crystallinestructure, the deposited films were annealed in air over a temperature range of 700 ÷ 900 °C. By XRD analysis it was established that as the deposited films were amorphous, they crystallized into a pure cubic structure as a result of annealing in air at a temperature above 820 °C.The electrophysical properties of YSZ films were investigated on structures such¨as Ni/YSZ/Pt/Ti/Si and Ni/YSZ/Si. Film features ? > 20 and tg ? < 0.05 were obtained. An estimate of the capacity-voltage characteristic proved that the Ni/YSZ/Si structures possessed a hysteresis. This hysteresis resulted from the drift of the mobile ions in the YSZ film. High-temperature ionic conductivity of the stabilized zirconia was determined by the measurements of the electric resistivity of the YSZ films at 1 kHz over the temperature range from ambient to 800 °C. The YSZ film conductivity obtained was 1.96 × 10-2 S/cm under 800 °C.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom