
CELLULOSE MATERIALS MODIFIED BY SILVER NANOPARTICLES AND THE STUDY OF THEIR ANTIBACTE-RIAL PROPERTIES
Author(s) -
Bijamal Raimovna Tausarova,
Сауле Маратовна Рахимова
Publication year - 2020
Publication title -
himiâ rastitelʹnogo syrʹâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.2
H-Index - 6
eISSN - 1029-5151
pISSN - 1029-5143
DOI - 10.14258/jcprm.2020025986
Subject(s) - polyvinyl alcohol , silver nanoparticle , silver nitrate , sodium borohydride , materials science , chemical engineering , air permeability specific surface , polymer , cellulose , aqueous solution , nanoparticle , scanning electron microscope , surface modification , composite material , ultimate tensile strength , oxidized cellulose , nanotechnology , chemistry , organic chemistry , layer (electronics) , engineering , catalysis
The article discusses a method for producing silver nanoparticles (NPs) in aqueous solutions by reducing sodium borohydride in the presence of polyvinyl alcohol; selected optimal conditions for the synthesis. The resulting silver NPs have a spherical shape, with a diameter of from 30 to 130 nm. NPs are stable, do not precipitate and do not change color for 3–4 weeks. Electron microscopic images confirm the formation of a thin polymer film on the surface of cellulose fiber and show a change in the morphological surface of the treated samples compared to untreated ones. The energy dispersive microanalysis data showed that the raw cotton fabric contains C – 57.02%, O – 42.98%. After processing, nanoscale particles of silver are encapsulated on the surface of the fabric – 0.18–0.28%, which are distributed rather unevenly. Modification of cellulosic textile materials of silver NPs imparts a stable antimicrobial effect , as well as improves their physico-mechanical and hygienic properties. The air permeability indicators for cotton original fabric 180 dm3/m2×sec., For the treated composition based on polyvinyl alcohol, NaBH4, and silver nitrate – 175 dm3/m2×sec. The breaking load of the fabric is: for the initial – 311 N, for treated – within 320–360 N. The indicators of air permeability and strength characteristics of cotton fabric treated with the proposed composition comply with the regulatory requirements for this group of fabrics.