
FLAVONOID COMPOUNDS FROM ARTEMISIA GLABELLA KAR. ET. KIR., SYNTHESIS ON THEIR BASIS AND BIOLOGICAL ACTIVITY
Author(s) -
Габиден Маратович Байсаров,
Айдана Рахманиякызы Жуматаева,
Г. К. Мукушева,
Э. Э. Шульц,
Р. Б. Сейдахметова,
С. М. Адекенов
Publication year - 2018
Publication title -
himiâ rastitelʹnogo syrʹâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.2
H-Index - 6
eISSN - 1029-5151
pISSN - 1029-5143
DOI - 10.14258/jcprm.2018033766
Subject(s) - chemistry , biological activity , piperidine , proton nmr , stereochemistry , organic chemistry , in vitro , biochemistry
As a result of complex chemical processing of medicinal raw materials of Artemisia glabella Kar. et Kir., including CO2 extraction and lactones isolation, we have investigated the chemical composition of flavonoids to select the biologically active ones and carry out modifications on their basis. Two flavonoids pectolinaringenin and cirsilineol have been isolated by partition chromatography from the secondary raw materials of Artemisia glabella Kar. et. Kir. and identified. To obtain new biologically active compounds, we have synthesized new amino derivatives of cirsilineol by the Mannich reaction with secondary amines (piperidine and N-methylpiperazine) in isopropanol with the presence of dimethylaminopyridine. In proton NMR spectrum of the synthesized compounds there are proton signals of the initial cirsilineol fragment; however, there is no N-8 proton signal, besides other signals typical for amines’ benzene ring have been observed at 1.53–3.90 ppm. It means that reaction occurred at the C-8 position of carbon in ring A. The synthesized compounds have been studied for various types of biological activity typical for this class, including hepatoprotective and anti-inflammatory activities. Amino derivatives of cirsilineol exhibit a moderate activity against HepG2 cell line, while cirsilineol at a dose of 5 mg/ml expresses a pronounced hepatoprotective activity. Moreover, all samples at a dose of 25 mg/kg show poor anti-inflammatory effects on the model of acute exudative reaction in vivo.