
Группы движений собственно гельмгольцевой трехмерной геометрии и симплициальной трехмерной геометрии III типа
Author(s) -
R. A. Bogdanova,
В. А. Кыров
Publication year - 2019
Publication title -
izvestiâ altajskogo gosudarstvennogo universiteta
Language(s) - Russian
Resource type - Journals
eISSN - 1561-9451
pISSN - 1561-9443
DOI - 10.14258/izvasu(2019)4-10
Subject(s) - sl2(r) , philosophy , mathematics , combinatorics
Основными задачами теории феноменологически симметричных (ФС) геометрий (геометрий локальной максимальной подвижности) являются их полная классификация, вывод уравнения феноменологической симметрии и нахождение групп движений для каждой из них. ФС геометрия задается на многообразии функцией пары точек. Феноменологическая симметрия трехмерных ФС геометрий состоит в наличии функциональной связи между значениями функции пары точек для всех пар из пяти произвольных точек. Их классификация была впервые построена В.Х. Левом и позже дополнена В.А. Кыровым симплициальной геометрией III типа. Методами установления групповой симметрии ФС геометрий являются метод решения функциональных уравнений на множество движений, разработанный для двумерных и некоторых трехмерных ФС геометрий, и метод экспоненциального отображения.Методом экспоненциального отображения для собственно гельмгольцевой и симплициальнойIII типа трехмерных ФС геометрий находятся явные выражения групп движений. Данные вычисленияпроизводятся с использованием аппарата комплексного анализа и формулируются в виде отдельной теоремы. Группы движений этих геометрий являются действиями группы Ли SL2(C)R в пространстве R3.