z-logo
open-access-imgOpen Access
Sign-changing solutions for a Schrödinger–Kirchhoff–Poisson system with 4-sublinear growth nonlinearity
Author(s) -
Shubin Yu,
Ziheng Zhang,
Rong Yuan
Publication year - 2021
Publication title -
electronic journal of qualitative theory of differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.524
H-Index - 33
ISSN - 1417-3875
DOI - 10.14232/ejqtde.2021.1.86
Subject(s) - algorithm , computer science
In this paper we consider the followingSchrödinger–Kirchhoff–Poisson-type system { − ( a + b ∫ Ω | ∇ u | 2 d x ) Δ u + λ ϕ u = Q ( x ) | u | p − 2 u in   Ω , − Δ ϕ = u 2 in   Ω , u = ϕ = 0 on   ∂ Ω , where Ω is abounded smooth domain of R 3 , a > 0 , b ≥ 0 are constantsand λ is a positive parameter. Under suitable conditions on Q ( x ) and combining the method of invariant sets of descending flow, we establishthe existence and multiplicity of sign-changing solutions to this problemfor the case that 2 < p < 4 as λ sufficient small. Furthermore,for λ = 1 and the above assumptions on Q ( x ) , we obtain the sameconclusions with 2 < p < 12 5 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom