z-logo
open-access-imgOpen Access
Zero Initialized Active Learning with Spectral Clustering using Hungarian Method
Author(s) -
Dávid Papp
Publication year - 2021
Publication title -
acta cybernetica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.143
H-Index - 18
eISSN - 2676-993X
pISSN - 0324-721X
DOI - 10.14232/actacyb.288006
Subject(s) - computer science , cluster analysis , artificial intelligence , spectral clustering , set (abstract data type) , machine learning , process (computing) , class (philosophy) , data mining , sampling (signal processing) , labeled data , constrained clustering , pattern recognition (psychology) , correlation clustering , cure data clustering algorithm , filter (signal processing) , computer vision , programming language , operating system
Supervised machine learning tasks often require a large number of labeled training data to set up a model, and then prediction - for example the classification - is carried out based on this model. Nowadays tremendous amount of data is available on the web or in data warehouses, although only a portion of those data is annotated and the labeling process can be tedious, expensive and time consuming. Active learning tries to overcome this problem by reducing the labeling cost through allowing the learning system to iteratively select the data from which it learns. In special case of active learning, the process starts from zero initialized scenario, where the labeled training dataset is empty, and therefore only unsupervised methods can be performed. In this paper a novel query strategy framework is presented for this problem, called Clustering Based Balanced Sampling Framework (CBBSF), which is not only select the initial labeled training dataset, but uniformly selects the items among the categories to get a balanced labeled training dataset. The framework includes an assignment technique to implicitly determine the class membership probabilities. Assignment solution is updated during CBBSF iterations, hence it simulates supervised machine learning more accurately as the process progresses. The proposed Spectral Clustering Based Sampling (SCBS) query startegy realizes the CBBSF framework, and therefore it is applicable in the special zero initialized situation. This selection approach uses ClusterGAN (Clustering using Generative Adversarial Networks) integrated in the spectral clustering algorithm and then it selects an unlabeled instance depending on the class membership probabilities. Global and local versions of SCBS were developed, furthermore, most confident and minimal entropy measures were calculated, thus four different SCBS variants were examined in total. Experimental evaluation was conducted on the MNIST dataset, and the results showed that SCBS outperforms the state-of-the-art zero initialized active learning query strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here