z-logo
open-access-imgOpen Access
Application of developmental principles for spinal cord repair after injury
Author(s) -
Florentia Papastefanaki
Publication year - 2022
Publication title -
the international journal of developmental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.837
H-Index - 103
eISSN - 1696-3547
pISSN - 0214-6282
DOI - 10.1387/ijdb.210110fp
Subject(s) - biology , neuroscience , spinal cord injury , regeneration (biology) , stem cell , central nervous system , spinal cord , neural stem cell , oligodendrocyte , population , bioinformatics , microbiology and biotechnology , medicine , myelin , environmental health
The superiority of the mammalian central nervous system (CNS) among other vertebrates does not involve an advanced capacity for regeneration and any insult results to irreversible function loss. Spinal cord injury (SCI) is one example of CNS trauma affecting thousands of individuals, mostly young, each year. Despite enormous progress in our comprehension of the molecular and cellular mechanisms underlying the pathophysiology after SCI, also providing targets for therapeutic interventions, so far, no efficient therapy exists, emphasizing the necessity for further research. A breadth of studies have demonstrated that, after SCI, principles of development come at play either to promote or to prohibit spontaneous regeneration and their accurate manipulation holds promise toward functional recovery. In this overview, some of the most recent and important studies are discussed that offer explicitly novel input from the field of development to the field of CNS repair regarding the modification of the inhibitory environment of the injured spinal cord – majorly referring to the glial scar – the activation of endogenous cell populations such as ependymal stem cells and oligodendrocyte precursor cells, and the developmental transcriptional program that is transiently activated in neurons after injury. Furthermore, current advances in stem cell technology are highlighted in terms of refinement and precise design of the appropriate stem cell population to be transplanted not only for cell replacement but also for modulation of the host environment. As single-dimension applications were not yet clinically successful, combinatorial strategies tackling more than one targets are suggested as more auspicious.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here