z-logo
open-access-imgOpen Access
GDP polyribonucleotidyltransferase domain of vesicular stomatitis virus polymerase regulates leader-promoter escape and polyadenylation-coupled termination during stop-start transcription
Author(s) -
Minako Ogino,
Todd Green,
Tomoaki Ogino
Publication year - 2022
Publication title -
plos pathogens
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.719
H-Index - 206
eISSN - 1553-7374
pISSN - 1553-7366
DOI - 10.1371/journal.ppat.1010287
Subject(s) - biology , transcription (linguistics) , vesicular stomatitis virus , polyadenylation , rna polymerase ii , rna , microbiology and biotechnology , messenger rna , rna polymerase , gene , genetics , promoter , virus , gene expression , philosophy , linguistics
The unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase) domain of the vesicular stomatitis virus (VSV) L protein possesses a dual-functional "priming-capping loop" that governs terminal de novo initiation for leader RNA synthesis and capping of monocistronic mRNAs during the unique stop-start transcription cycle. Here, we investigated the roles of basic amino acid residues on a helix structure directly connected to the priming-capping loop in viral RNA synthesis and identified single point mutations that cause previously unreported defective phenotypes at different steps of stop-start transcription. Mutations of residue R1183 (R1183A and R1183K) dramatically reduced the leader RNA synthesis activity by hampering early elongation, but not terminal de novo initiation or productive elongation, suggesting that the mutations negatively affect escape from the leader promoter. On the other hand, mutations of residue R1178 (R1178A and R1178K) decreased the efficiency of polyadenylation-coupled termination of mRNA synthesis at the gene junctions, but not termination of leader RNA synthesis at the leader-to- N -gene junction, resulting in the generation of larger amounts of aberrant polycistronic mRNAs. In contrast, both the R1183 and R1178 residues are not essential for cap-forming activities. The R1183K mutation was lethal to VSV, whereas the R1178K mutation attenuated VSV and triggered the production of the polycistronic mRNAs in infected cells. These observations suggest that the PRNTase domain plays multiple roles in conducting accurate stop-start transcription beyond its known role in pre-mRNA capping.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here