z-logo
open-access-imgOpen Access
An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing
Author(s) -
Raymond Wong,
Ahalya Balachandran,
Peter K. Cheung,
Ran Cheng,
Qun Pan,
Peter Stoilov,
P. Richard Harrigan,
Benjamin J. Blencowe,
Donald R. Branch,
Alan Cochrane
Publication year - 2020
Publication title -
plos pathogens
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.719
H-Index - 206
eISSN - 1553-7374
pISSN - 1553-7366
DOI - 10.1371/journal.ppat.1008307
Subject(s) - biology , viral replication , rna , rna splicing , gene expression , activator (genetics) , kinase , microbiology and biotechnology , messenger rna , virology , virus , receptor , gene , biochemistry
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing—a segment of the viral lifecycle not targeted by current drugs—and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type ( Ba-L , NL4-3 , LAI , IIIB , and N54 ) and drug-resistant strains of HIV-1 (IC 50 : ~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25–0.67% by ≥ 10–20%), gene expression (0.01–0.46% by ≥ 2–5 fold), and protein abundance (0.02–0.34% by ≥ 1.5–2 fold) being affected. Decreased expression of Tat, but not Gag/Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host RNA processing and highlights the potential of modulating host intracellular signaling as an alternative approach for controlling HIV-1 infection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom