z-logo
open-access-imgOpen Access
Kinetics of HTLV-1 reactivation from latency quantified by single-molecule RNA FISH and stochastic modelling
Author(s) -
Michi Miura,
Supravat Dey,
Saumya Ramanayake,
Abhyudai Singh,
David Rueda,
Charles Bangham
Publication year - 2019
Publication title -
plos pathogens
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.719
H-Index - 206
eISSN - 1553-7374
pISSN - 1553-7366
DOI - 10.1371/journal.ppat.1008164
Subject(s) - transcription (linguistics) , provirus , biology , sense (electronics) , microbiology and biotechnology , peripheral blood mononuclear cell , rna , virology , in vitro , chemistry , genetics , gene , philosophy , linguistics , genome
The human T cell leukemia virus HTLV-1 establishes a persistent infection in vivo in which the viral sense-strand transcription is usually silent at a given time in each cell. However, cellular stress responses trigger the reactivation of HTLV-1, enabling the virus to transmit to a new host cell. Using single-molecule RNA FISH, we measured the kinetics of the HTLV-1 transcriptional reactivation in peripheral blood mononuclear cells (PBMCs) isolated from HTLV-1 + individuals. The abundance of the HTLV-1 sense and antisense transcripts was quantified hourly during incubation of the HTLV-1-infected PBMCs ex vivo . We found that, in each cell, the sense-strand transcription occurs in two distinct phases: the initial low-rate transcription is followed by a phase of rapid transcription. The onset of transcription peaked between 1 and 3 hours after the start of in vitro incubation. The variance in the transcription intensity was similar in polyclonal HTLV-1 + PBMCs (with tens of thousands of distinct provirus insertion sites), and in samples with a single dominant HTLV-1 + clone. A stochastic simulation model was developed to estimate the parameters of HTLV-1 proviral transcription kinetics. In PBMCs from a leukemic subject with one dominant T-cell clone, the model indicated that the average duration of HTLV-1 sense-strand activation by Tax (i.e. the rapid transcription) was less than one hour. HTLV-1 antisense transcription was stable during reactivation of the sense-strand. The antisense transcript HBZ was produced at an average rate of ~0.1 molecules per hour per HTLV-1 + cell; however, between 20% and 70% of HTLV-1-infected cells were HBZ -negative at a given time, the percentage depending on the individual subject. HTLV-1-infected cells are exposed to a range of stresses when they are drawn from the host, which initiate the viral reactivation. We conclude that whereas antisense-strand transcription is stable throughout the stress response, the HTLV-1 sense-strand reactivation is highly heterogeneous and occurs in short, self-terminating bursts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here