z-logo
open-access-imgOpen Access
Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis
Author(s) -
Mohammad Chowdhury,
Iffat Naeem,
Hude Quan,
Alexander A. C. Leung,
Khokan C. Sikdar,
Maeve O’Beirne,
Tanvir Chowdhury Turin
Publication year - 2022
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0266334
Subject(s) - meta analysis , meta regression , checklist , predictive modelling , machine learning , statistics , statistic , random forest , regression analysis , artificial intelligence , population , regression , computer science , medicine , mathematics , psychology , environmental health , cognitive psychology
Objective We aimed to identify existing hypertension risk prediction models developed using traditional regression-based or machine learning approaches and compare their predictive performance. Methods We systematically searched MEDLINE, EMBASE, Web of Science, Scopus, and the grey literature for studies predicting the risk of hypertension among the general adult population. Summary statistics from the individual studies were the C-statistic, and a random-effects meta-analysis was used to obtain pooled estimates. The predictive performance of pooled estimates was compared between traditional regression-based models and machine learning-based models. The potential sources of heterogeneity were assessed using meta-regression, and study quality was assessed using the PROBAST (Prediction model Risk Of Bias ASsessment Tool) checklist. Results Of 14,778 articles, 52 articles were selected for systematic review and 32 for meta-analysis. The overall pooled C-statistics was 0.75 [0.73–0.77] for the traditional regression-based models and 0.76 [0.72–0.79] for the machine learning-based models. High heterogeneity in C-statistic was observed. The age (p = 0.011), and sex (p = 0.044) of the participants and the number of risk factors considered in the model (p = 0.001) were identified as a source of heterogeneity in traditional regression-based models. Conclusion We attempted to provide a comprehensive evaluation of hypertension risk prediction models. Many models with acceptable-to-good predictive performance were identified. Only a few models were externally validated, and the risk of bias and applicability was a concern in many studies. Overall discrimination was similar between models derived from traditional regression analysis and machine learning methods. More external validation and impact studies to implement the hypertension risk prediction model in clinical practice are required.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here