z-logo
open-access-imgOpen Access
Using machine learning as a surrogate model for agent-based simulations
Author(s) -
Claudio Angione,
Eric Silverman,
Elisabeth Yaneske
Publication year - 2022
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0263150
Subject(s) - surrogate model , computer science , machine learning , artificial intelligence , artificial neural network , gaussian process , process (computing) , sensitivity (control systems) , gaussian , engineering , physics , quantum mechanics , electronic engineering , operating system
In this proof-of-concept work, we evaluate the performance of multiple machine-learning methods as surrogate models for use in the analysis of agent-based models (ABMs). Analysing agent-based modelling outputs can be challenging, as the relationships between input parameters can be non-linear or even chaotic even in relatively simple models, and each model run can require significant CPU time. Surrogate modelling, in which a statistical model of the ABM is constructed to facilitate detailed model analyses, has been proposed as an alternative to computationally costly Monte Carlo methods. Here we compare multiple machine-learning methods for ABM surrogate modelling in order to determine the approaches best suited as a surrogate for modelling the complex behaviour of ABMs. Our results suggest that, in most scenarios, artificial neural networks (ANNs) and gradient-boosted trees outperform Gaussian process surrogates, currently the most commonly used method for the surrogate modelling of complex computational models. ANNs produced the most accurate model replications in scenarios with high numbers of model runs, although training times were longer than the other methods. We propose that agent-based modelling would benefit from using machine-learning methods for surrogate modelling, as this can facilitate more robust sensitivity analyses for the models while also reducing CPU time consumption when calibrating and analysing the simulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here