z-logo
open-access-imgOpen Access
PCA driven mixed filter pruning for efficient convNets
Author(s) -
Waqas Ahmed,
Shahab U. Ansari,
Muhammad Hanif,
Akhtar Khalil
Publication year - 2022
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0262386
Subject(s) - pruning , redundancy (engineering) , computer science , pattern recognition (psychology) , artificial neural network , filter (signal processing) , artificial intelligence , principal component analysis , data compression ratio , algorithm , image compression , image (mathematics) , computer vision , image processing , agronomy , biology , operating system
Deployment of the deep neural networks (DNNs) on resource-constrained devices is a challenging task due to their limited memory and computational power. In most cases, the pruning techniques do not prune the DNNs to full extent and redundancy still exists in these models. Considering this, a mixed filter pruning approach based on principal component analysis (PCA) and geometric median is presented. First, a pre-trained model is analyzed by using PCA to identify the important filters for every layer. These important filters are then used to reconstruct the network with a fewer number of layers and a fewer number of filters per layer. A new network with optimized structure is constructed and trained on the data. Secondly, the trained model is then analyzed using geometric median as a base. The redundant filters are identified and removed which results in further compression of the network. Finally, the pruned model is fine tuned to regain the accuracy. Experiments on CIFAR-10, CIFAR-100 and ILSVRC 2017 datasets show that the proposed mixed pruning approach is feasible and can compress the network to greater extent without any significant loss to accuracy. With VGG-16 on CIFAR-10, the number of operations and parameters are reduced to 18.56× and 3.33×, respectively, with almost 1% loss in the accuracy. The compression rate for AlexNet on CIFAR-10 dataset is 2.61× and 4.85× in terms of number of operations and number of parameters, respectively, with a gain of 1.2% in the accuracy. On CIFAR-100, VGG-19 is compressed by 16.02 X in terms of number of operations and 36× in terms of number of parameters with a 2.6% loss of accuracy. Similarly, the compression rate for VGG-19 network on ILSVRC 2017 dataset is 1.87× and 2.4× for operations and parameters with 0.5% loss in accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here