
A deep neural network model for multi-view human activity recognition
Author(s) -
Prasetia Utama Putra,
Keisuke Shima,
Koji Shimatani
Publication year - 2022
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0262181
Subject(s) - softmax function , computer science , convolutional neural network , artificial intelligence , deep learning , transfer of learning , artificial neural network , machine learning , residual , deep neural networks , pattern recognition (psychology) , representation (politics) , feature learning , algorithm , politics , political science , law
Multiple cameras are used to resolve occlusion problem that often occur in single-view human activity recognition. Based on the success of learning representation with deep neural networks (DNNs), recent works have proposed DNNs models to estimate human activity from multi-view inputs. However, currently available datasets are inadequate in training DNNs model to obtain high accuracy rate. Against such an issue, this study presents a DNNs model, trained by employing transfer learning and shared-weight techniques, to classify human activity from multiple cameras. The model comprised pre-trained convolutional neural networks (CNNs), attention layers, long short-term memory networks with residual learning (LSTMRes), and Softmax layers. The experimental results suggested that the proposed model could achieve a promising performance on challenging MVHAR datasets: IXMAS (97.27%) and i3DPost (96.87%). A competitive recognition rate was also observed in online classification.