z-logo
open-access-imgOpen Access
Deciphering the evolution of composite-type GSKIP in mitochondria and Wnt signaling pathways
Author(s) -
Cheng-Yu Tsai,
SheanJaw Chiou,
Huey-Jiun Ko,
Ya-Min Cheng,
Sin-Yi Lin,
Yun-Ling Lai,
Chen-Yen Lin,
Chihuei Wang,
JiinTsuey Cheng,
HsinFu Liu,
Andy C.C. Kwan,
JoonKhim Loh,
YiRen Hong
Publication year - 2022
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0262138
Subject(s) - biology , binding site , gsk 3 , conserved sequence , binding domain , genetics , microbiology and biotechnology , peptide sequence , signal transduction , gene
We previously revealed the origin of mammalian simple-type glycogen synthase kinase interaction protein (GSKIP), which served as a scavenger and a competitor in the Wnt signaling pathway during evolution. In this study, we investigated the conserved and nonconserved regions of the composite-type GSKIP by utilizing bioinformatics tools, site-directed mutagenesis, and yeast two-hybrid methods. The regions were denoted as the pre-GSK3β binding site, which is located at the front of GSK3β-binding sites. Our data demonstrated that clustered mitochondria protein 1 (CLU1), a type of composite-type GSKIP that exists in the mitochondria of all eukaryotic organisms, possesses the protein known as domain of unknown function 727 (DUF727), with a pre-GSK3β-binding site and a mutant GSK3β-binding flanking region. Another type of composite-type GSKIP, armadillo repeat containing 4 (ARMC4), which is known for cilium movement in vertebrates, contains an unintegrated DUF727 flanking region with a pre-GSK3β-binding site (115SPxF118) only. In addition, the sequence of the GSK3β-binding site in CLU1 revealed that Q126L and V130L were not conserved, differing from the ideal GSK3β-binding sequence of simple-type GSKIP. We further illustrated two exceptions, namely 70 kilodalton heat shock proteins (Hsp70/DnaK) and Mitofilin in nematodes, that presented an unexpected ideal GSK3β-binding region with a pre-GSK3β sequence; this composite-type GSKIP could only occur in vertebrate species. Furthermore, we revealed the importance of the pre-GSK3β-binding site (118F or 118Y) and various mutant GSK3β-binding sites of composite-type GSKIP. Collectively, our data suggest that the new composite-type GSKIP starts with a DUF727 domain followed by a pre-GSK3β-binding site, with the subsequent addition of the GSK3β-binding site, which plays vital roles for CLU1, Mitofilin, and ARMC4 in mitochondria and Wnt signaling pathways during evolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here