z-logo
open-access-imgOpen Access
Evaluation of micro-RNA in extracellular vesicles from blood of patients with prostate cancer
Author(s) -
Jiyoon Kim,
Siwoo Cho,
Yonghyun Park,
Jiyoul Lee,
Jaesung Park
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0262017
Subject(s) - prostate cancer , rna , prostate specific antigen , hyperplasia , microrna , extracellular vesicle , prostate , pca3 , extracellular vesicles , medicine , microvesicles , cancer , urology , oncology , cancer research , biology , gene , microbiology and biotechnology , biochemistry
Extracellular vesicles (EVs) contain various types of molecules including micro-RNAs, so isolating EVs can be an effective way to analyze and diagnose diseases. A lot of micro-RNAs have been known in relation to prostate cancer (PCa), and we evaluate miR-21, miR-141, and miR-221 in EVs and compare them with prostate-specific antigen (PSA). EVs were isolated from plasma of 38 patients with prostate cancer and 8 patients with benign prostatic hyperplasia (BPH), using a method that showed the highest recovery of RNA. Isolation of EVs concentrated micro-RNAs, reducing the cycle threshold (Ct) value of RT-qPCR amplification of micro-RNA such as miR-16 by 5.12 and miR-191 by 4.65, compared to the values before EV isolation. Normalization of target micro-RNAs was done using miR-191. For miR-221, the mean expression level of patients with localized PCa was significantly higher than that of the control group, having 33.45 times higher expression than the control group (p < 0.01). Area under curve (AUC) between BPH and PCa for miR-221 was 0.98 (p < 0.0001), which was better than AUC for prostate-specific antigen (PSA) level in serum for the same patients. The levels of miR-21 and miR-141 in EVs did not show significant changes in patients with PCa compared to the control group in this study. This study suggests isolating EVs can be a helpful approach in analyzing micro-RNAs with regard to disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom