
Outlier analysis: Natural resources and immigration policy
Author(s) -
Seung-Whan Choi
Publication year - 2022
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0261533
Subject(s) - outlier , econometrics , natural resource , replication (statistics) , immigration , regression analysis , regression , artifact (error) , statistics , economics , demographic economics , computer science , biology , political science , mathematics , artificial intelligence , ecology , law
This replication underlines the importance of outlier diagnostics since many researchers have long neglected influential observations in OLS regression analysis. In his article, entitled “Primary Resources, Secondary Labor,” Shin finds that advanced democracies with increased natural resource wealth, particularly from oil and natural gas production, are more likely to restrict low-skill immigration policy. By performing outlier diagnostics, this replication shows that Shin’s findings are a statistical artifact. When one outlying country, Norway, is removed from the sample data, I observe almost no significant and negative relationship between oil wealth and immigration policy. When two outlying countries are excluded, the effect of oil wealth completely disappears. Robust regression analysis, a widely used remedial method for outlier problems, confirms the results of my outlier diagnostics.