z-logo
open-access-imgOpen Access
The use of finite mixture models to examine the serum 25(OH)D levels among Saudis
Author(s) -
Ibrahim Al-Sumaih,
Michael Donnelly,
Ciarán O’Neill
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0260748
Subject(s) - respondent , latent class model , linear regression , regression analysis , statistics , latent variable , mathematics , population , covariate , demography , regression , sociology , political science , law
Background Recorded serum 25(OH)D in survey data varies with observed and unobserved respondent characteristics. The aim of this study was to expose latent population sub-groups and examine variation across groups regarding relationships between serum 25(OH)D and observable characteristics. Methods This study explored the role of unobserved heterogeneity on associations between surveyed 25(OH)D and various factors using a sample (n = 2,641) extracted from the Saudi Health Interview Survey (2013). Linear regression and finite mixture models (FMM) were estimated and compared. The number of latent classes in the FMM was chosen based on BIC score. Result Three latent classes were identified. Class I (39.82%), class II (41.03%), and class III (19.15%) with mean 25(OH)D levels of 22.79, 34.88, and 57.45 ng/ml respectively. Distinct patterns of associations with nutrition, behaviour and socio-demographic variables were recorded across classes that were not revealed in pooled linear regression. Conclusion FMM has the potential to provide additional insights on the relationship between 25(OH)D levels and observable characteristics. It should be more widely considered as a method of investigation in this area.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here