z-logo
open-access-imgOpen Access
Design of a BIST implemented AES crypto-processor ASIC
Author(s) -
Md. Liakot Ali,
Md. Shazzatur Rahman,
Md. Farhad Hossain
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0259956
Subject(s) - application specific integrated circuit , nist , advanced encryption standard , testability , computer science , embedded system , cryptography , computer hardware , electronic design automation , built in self test , encryption , algorithm , engineering , reliability engineering , operating system , natural language processing
This paper presents the design of a Built-in-self-Test (BIST) implemented Advanced Encryption Standard (AES) cryptoprocessor Application Specific Integrated Circuit (ASIC). AES has been proved as the strongest symmetric encryption algorithm declared by USA Govt. and it outperforms all other existing cryptographic algorithms. Its hardware implementation offers much higher speed and physical security than that of its software implementation. Due to this reason, a number of AES cryptoprocessor ASIC have been presented in the literature, but the problem of testability in the complex AES chip is not addressed yet. This research introduces a solution to the problem for the AES cryptoprocessor ASIC implementing mixed-mode BIST technique, a hybrid of pseudo-random and deterministic techniques. The BIST implemented ASIC is designed using IEEE industry standard Hardware Description Language(HDL). It has been simulated using Electronic Design Automation (EDA)tools for verification and validation using the input-output data from the National Institute of Standard and Technology (NIST) of the USA Govt. The simulation results show that the design is working as per desired functionalities in different modes of operation of the ASIC. The current research is compared with those of other researchers, and it shows that it is unique in terms of BIST implementation into the ASIC chip.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here