z-logo
open-access-imgOpen Access
Development, evaluation and application of a novel markerless motion analysis system to understand push-start technique in elite skeleton athletes
Author(s) -
Laurie Needham,
Murray Evans,
Darren Cosker,
Steffi Colyer
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0259624
Subject(s) - motion capture , computer science , motion (physics) , artificial intelligence , asymmetry , motion analysis , computer vision , simulation , physics , quantum mechanics
This study describes the development, evaluation and application of a computer vision and deep learning system capable of capturing sprinting and skeleton push start step characteristics and mass centre velocities (sled and athlete). Movement data were captured concurrently by a marker-based motion capture system and a custom markerless system. High levels of agreement were found between systems, particularly for spatial based variables (step length error 0.001 ± 0.012 m) while errors for temporal variables (ground contact time and flight time) were on average within ± 1.5 frames of the criterion measures. Comparisons of sprinting and pushing revealed decreased mass centre velocities as a result of pushing the sled but step characteristics were comparable to sprinting when aligned as a function of step velocity. There were large asymmetries between the inside and outside leg during pushing (e.g. 0.22 m mean step length asymmetry) which were not present during sprinting (0.01 m step length asymmetry). The observed asymmetries suggested that force production capabilities during ground contact were compromised for the outside leg. The computer vision based methods tested in this research provide a viable alternative to marker-based motion capture systems. Furthermore, they can be deployed into challenging, real world environments to non-invasively capture data where traditional approaches are infeasible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here