
Training the domestic ferret to discriminate odors associated with wildlife disease
Author(s) -
Glen J. Golden,
Maryanne Opiekun,
Talia Martin-Taylor,
Bruce A. Kimball
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0259415
Subject(s) - feces , acetoin , biology , odor , influenza a virus subtype h5n1 , outbreak , biosecurity , wildlife , anas , zoology , veterinary medicine , ecology , virology , medicine , bacteria , virus , genetics , neuroscience
Recent avian influenza infection outbreaks have resulted in global biosecurity and economic concerns. Mallards are asymptomatic for the disease and can potentially spread AI along migratory bird flyways. In a previous study, trained mice correctly discriminated the health status of individual ducks on the basis of fecal odors when feces from post-infection periods were paired with feces from pre-infection periods. Chemical analyses indicated that avian influenza infection was associated with a marked increase of acetoin (3-hydroxy-2-butanone) in feces. In the current study, domesticated male ferrets (Mustela putorius furo) were trained to display a specific conditioned response (i.e. active scratch alert) in response to a marked increase of acetoin in a presentation of an acetoin:1-octen-3-ol solution. Ferrets rapidly generalized this learned response to the odor of irradiated feces from avian influenza infected mallards. These results suggest that a trained mammalian biosensor could be employed in an avian influenza surveillance program.