
Audiovisual incongruence differentially impacts left and right hemisphere sensorimotor oscillations: Potential applications to production
Author(s) -
David Jenson
Publication year - 2021
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0258335
Subject(s) - lateralization of brain function , speech production , somatosensory system , sensory system , psychology , perception , laterality , electroencephalography , cognitive psychology , speech perception , audiology , neuroscience , speech recognition , computer science , medicine
Speech production gives rise to distinct auditory and somatosensory feedback signals which are dynamically integrated to enable online monitoring and error correction, though it remains unclear how the sensorimotor system supports the integration of these multimodal signals. Capitalizing on the parity of sensorimotor processes supporting perception and production, the current study employed the McGurk paradigm to induce multimodal sensory congruence/incongruence. EEG data from a cohort of 39 typical speakers were decomposed with independent component analysis to identify bilateral mu rhythms; indices of sensorimotor activity. Subsequent time-frequency analyses revealed bilateral patterns of event related desynchronization (ERD) across alpha and beta frequency ranges over the time course of perceptual events. Right mu activity was characterized by reduced ERD during all cases of audiovisual incongruence, while left mu activity was attenuated and protracted in McGurk trials eliciting sensory fusion. Results were interpreted to suggest distinct hemispheric contributions, with right hemisphere mu activity supporting a coarse incongruence detection process and left hemisphere mu activity reflecting a more granular level of analysis including phonological identification and incongruence resolution. Findings are also considered in regard to incongruence detection and resolution processes during production.